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Abstract

Low-dimensional representations of speech data, such as formant values ex-

tracted by linear predictive coding analysis or spectral moments computed from

whole spectra viewed as probability distributions, have been instrumental in

both phonetic and phonological analyses over the last few decades. In this pa-

per, we present a framework for computing low-dimensional representations of

speech data based on two assumptions: that speech data represented in high-

dimensional data spaces lie on shapes called manifolds that can be used to map

speech data to low-dimensional coordinate spaces, and that manifolds underly-

ing speech data are generated from a combination of language-specific lexical,

phonological, and phonetic information as well as culture-specific socio-indexical

information that is expressed by talkers of a given speech community. We

demonstrate the basic mechanics of the framework by carrying out an analysis

of children’s productions of sibilant fricatives relative to those of adults in their

speech community using the phoneigen package – a publicly available implemen-

tation of the framework. We focus the demonstration on enumerating the steps

for constructing manifolds from data and then using them to map the data to

a low-dimensional space, explicating how manifold structure affects the learned

low-dimensional representations, and comparing the use of these representations

against standard acoustic features in a phonetic analysis. We conclude with a
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discussion of the framework’s underlying assumptions, its broader modeling po-

tential, and its position relative to recent advances in the field of representation

learning.

Keywords: manifold alignment, Laplacian Eigenmaps, socio-indexical,

phonetic categories, low-dimensional representations of speech

1. Introduction

The formulation of the source-filter model within the acoustic theory of

speech production (Chiba & Kajiyama, 1941; Fant, 1960) provided both the con-

ceptual and technical basis for characterizing speech sound segments in terms

of a small number of acoustically grounded features (as in Jakobson et al.,5

1951). These theoretical advances helped frame the development of digital sig-

nal processing techniques for recovering source and filter information from au-

dio recordings of speech signals. Linear predictive coding (LPC) techniques in

particular (see Burg, 1967; Makhoul, 1973, inter alia) yielded implementations

of efficient algorithms for extracting formant and fundamental frequency val-10

ues from segments of recorded speech. These low-dimensional representations

of speech data are widely used in phonetic analyses due to the incorporation

of LPC implementations in software packages for computational analysis (e.g.,

Praat; Boersma, 2001) that have been adopted by a large portion of the phonet-

ics research community. While criticisms of LPC have been noted, particularly15

in the case of formant extraction from speech data with high fundamental fre-

quencies (see e.g., Story & Bunton, 2016, for discussion as well as an alternative

method for estimating formant values in the speech of young children), LPC

techniques nevertheless underlie much of the computational analysis carried out

by phoneticians.20

For sound types that do not have a glottal source, such as voiceless obstru-

ents, different types of methods have been developed that avoid decomposing the

spectrum into source and filter components. For example, the method of spec-

tral moments (e.g., Forrest et al., 1988) treats a power spectrum as a discrete
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probability mass function and computes from it a small number of parameters25

that index its gross distributional properties. The quantities most commonly

used as spectral moments are the first moment (mean or centroid), which in-

dicates the center of gravity of the distribution along the frequency scale; the

second (central) moment (variance) or its square root (standard deviation),

both of which indicate the spread of the distribution; the third standardized30

moment (skewness), a unitless quantity that indicates the (a)symmetry of the

distribution; and the fourth standardized moment (kurtosis), a unitless quantity

that indicates the heaviness of the tails of the distribution. Another example

is discrete cosine transform (DCT) coefficients, which projects the spectrum

onto a basis of cosine functions (e.g., Nossair & Zahorian, 1991). This latter35

method yields a lower-dimensional representation of the spectrum (e.g., 10 or

fewer coefficients) that may be used to reconstruct a smoothed version of the

spectrum.

In this paper, we extend the long line of approaches to computing low-

dimensional representations of speech data (e.g., those described above, inter40

alia) by putting forward a computational framework based on the following two

assumptions. The first, termed the manifold assumption, holds that speech

data represented in high-dimensional data spaces lie on shapes called manifolds

that are embedded within these data spaces and that can be mapped to low-

dimensional coordinate spaces that facilitate phonetic analyses. The second,45

termed the socio-indexical assumption, concerns the types of information that

may be used to characterize the structure of manifolds underlying data. Stated

explicitly, the socio-indexical assumption entails that the manifolds underly-

ing speech data are generated from a combination of language-specific lexical,

phonological, and phonetic information and culture-specific socio-indexical in-50

formation that is expressed by talkers of a given speech community during speech

production. The framework is currently implemented via the phoneigen 1 pack-

1The source code for the phoneigen package is publicly available online at

https://github.com/patrickreidy/phoneigen, along with a description of the package and in-
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Figure 1: (left) Two-dimensional data lies on the one-dimensional Archimedes Spiral manifold

(middle). Data eigenmapped to lower-dimensional representations (right).

age, which is demonstrated in detail in Section 2. Specifically, we use phoneigen

in an analysis of the acquisition of sibilant fricatives produced by young children

with respect to the productions of adults in their speech community. Before pro-55

ceeding to the example analysis, we briefly discuss the motivation for each of

the two assumptions underlying our framework.

Motivation for the manifold assumption stems (in part) from the emergence

of computational techniques for computing representations of data that lie on

manifolds within the field of representation learning (see Bengio et al., 2013, for60

a review). In particular, several graph-based methods (see Tenenbaum et al.,

2000; Roweis & Saul, 2000; Seung & Lee, 2000; Belkin & Niyogi, 2003, inter alia)

were put forward for computing low-dimensional representations of data sets

situated in higher-dimensional spaces that reflect their intrinsic dimensionality.

To illustrate the main idea, the data shown in Figure 1 (left) is situated in65

a two-dimensional data space, while the intrinsic dimensionality of the data

is one-dimensional, as it lies on an Archimedes Spiral embedded within the

data space (middle). These graph-based techniques provide the computational

means for mapping the ostensibly two-dimensional data to a one-dimensional

coordinate space that reflects the underlying manifold structure. In brief, data70

stallation instructions.
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points correspond to nodes in a graph, while edges that connect nodes are

constructed based on a specified distance computation. The resulting graph is

used to map the data to a lower-dimensional space. Figure 1 (right) shows the

output of the Laplacian Eigenmaps technique (Belkin & Niyogi, 2003) applied

to the data2, which is derived from eigenvectors of a matrix representation of75

the graph called the Laplacian matrix, graph Laplacian, or simply the Laplacian

(see Chung, 1997; Cvetković et al., 2010).

The Laplacian Eigenmaps technique is implemented as a part of the phoneigen

package used in Section 2 to demonstrate the applicability of our framework in

phonetic analysis. The computations used in the demonstration are reviewed in80

Appendix A (hence, readers unfamiliar with graph-based methods may want to

read material therein before proceeding with Section 2). In general, graph-based

manifold methods have been usefully applied across a range of speech science

modeling problems including phonetic category learning (e.g., Jansen & Niyogi,

2007; Plummer et al., 2010; Plummer, 2014) and automatic speech recognition85

(e.g., Errity & McKenna, 2006; Jafari & Almasganj, 2010; Zhao & Zhang, 2012;

Norouzian et al., 2013; Tomar & Rose, 2014; Huang et al., 2016b,a). Section 3

discusses broader motivation for the manifold assumption as well as how our

framework is situated with respect to recent advances in representation learning

within the machine learning community.90

Broader motivation for the socio-indexical assumption is reserved for Sec-

tion 3, which reviews several experiments and analyses that inform our bur-

geoning understanding of the relationships between language-specific lexical and

phonological representations and phonetic categories. However, the main idea

behind the assumption can be illustrated by again using the data and the coordi-95

nate space in Figure 1 as a toy model of a sensory space. The Archimedes Spiral

manifold structure underlying the data points is characterized by a fixed formal

mathematical rule—i.e., the points in the xy-plane that lie on the Archimedes

spiral are those points that satisfy the equation r = aθ (expressed in polar

2The exact procedure for generating the output is covered in Appendix A.

5



  

1
2

3
4 5

6

7

8

910

11

12
1

2

3
4 5

6

7

8

910

1112

0

10

20

−10 0 10 20

x

y

Two Data Sets Indexed

1 2
3

4

5

6

7

8

9

10 11
12

1

2

3

4
5

6
7

8
9

10

11

12

1 2
3

4

5

6

7

8

9

10 11
12

1

2

3

4
5

6
7

8
9

10

11

12

−0.2

0.0

0.2

0 5 10

Point Index

e
ig

e
n
v
e
c
to

r 
e
1

Eigenmapping with Alignment

12

3

4

5

6

7

8

9

1011
12

1

2

3

4

5
6
7
8
9
10

11

12

−0.2

0.0

0.2

e
ig

e
n
v
e
c
to

r 
e
1

Eigenmapping with
Alignment

Figure 2: (left) The two data sets P (black) and Q (gray). Eigenmapping in terms of point

indices in the original data sets (middle) and a one-dimensional analysis space (right) where

representations are slightly translated for visibility.

coordinates). Yet, we depart from this type of characterization of underlying100

manifold structure. Rather, within our framework, the data points need not lie

on a spiral or any other shape described by a fixed formula. The points may in-

stead lie on one or any number of manifolds constructed from language-specific

phonological or lexical information, socially- or culturally-derived information,

or broader cognitive information.105

Indeed, a key aspect of the approach is that language-specific and socio-

cultural-specific information can be used to “align” data sets that occupy dif-

ferent areas of a sensory space. For example, suppose P and Q in Figure 2 (left)

are sets of auditory data produced by two different talkers. Moreover, suppose

the indices of the points encode lexical items. Graphs (i.e., manifolds) can be110

constructed over P and Q and then combined by adding edges that connect a

subset of the nodes based on like lexical items. This computation, called mani-

fold alignment (see, e.g., Hamm et al., 2005, as well as Chapter 5 in Ma & Fu,

2012), is applied in the phoneigen example analysis in Section 2 and reviewed in

Appendix A. Crucially, the auditory information, the socio-indexical informa-115

tion, and the lexical information are all reflected in the resulting socio-auditory

manifold. Applying the Laplacian Eigenmaps technique to the combined graph
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yields the aligned representations3 in Figure 2 (middle and right). Under this

approach, the superposing language-specific and socio-cultural-specific informa-

tion and its interaction with the sensory space information are thus made an120

integral part of the computations that map speech data to low-dimensional

spaces for phonetic analyses. In this connection, Section 2 provides a concrete

analytic example in support of the socio-indexical assumption. In the analysis,

during graph construction the nodes of the graphs still correspond to speech

data points, but crucially edges that connect nodes are constructed based on125

socio-indexical and lexical information in addition to a specified distance compu-

tation. Details of the procedure are provided in the demonstration that follows.

2. Socio-auditory manifolds and eigenmapping for phonetic analyses

This section demonstrates how to use functions from the phoneigen package

in order to compute low-dimensional phonetic representations for the voiceless130

sibilant fricatives /s/ and /S/ produced by native English-speaking adults and

native English-acquiring two- and three-year-old children. These consonants

are articulated by raising the tongue toward the roof of the mouth, so as to

form a narrow constriction in the oral cavity. Turbulence noise sources are

generated when the air flowing through this linguopalatal constriction becomes135

turbulent and when the turbulent jet impinges on the teeth downstream from the

constriction. These noise sources excite the cavity anterior to the constriction.

Consequently, the difference in place of articulation between sibilant fricatives

is represented in the distribution of energy in their respective spectra: e.g., in

an adult’s fluent productions, the more anterior place of articulation for /s/,140

compared with /S/, entails a smaller front-cavity volume and thus resonances

at higher frequencies (see Figure 3).

While an energy spectrum is a convenient representation that is easily com-

puted from the frication noise of a sibilant, one problem posed by such a rep-

3Again, the exact procedure for generating the output is covered in Appendix A.
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Figure 3: Excitation patterns computed from participant A50N’s productions of /s/ (black)

and /S/ (gray).

resentation is its high dimensionality (e.g., a spectrum estimated from a 20-ms145

window of frication noise sampled at 44.1 kHz will be a 441-dimensional vec-

tor). In the examples that follow, high-dimensional representations of /s/ and

/S/ are mapped to a low-dimensional representation that denotes the phonetic

differences in place of articulation between these fricatives. Moreover, this map-

ping is learned by constructing a socio-auditory manifold, a graph structure that150

represents acoustic properties of the high-dimensional spectral representations

of the speech data within a superposing interpersonal network structure that

links the speakers who produced the tokens of /s/ and /S/. The goals of this

section are: first, to demonstrate how to compose a sequence of functions from

the phoneigen package in order to take a data set comprising high-dimensional155

observations as input, construct a socio-auditory manifold, and derive a low-

dimensional representation as output; and, second, to demonstrate that the de-

rived low-dimensional representation depends crucially on the structure of the

socio-auditory manifold. Readers unfamiliar with graph-based methods may

wish to read Appendix A before proceeding.160
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2.1. Overview of the data set

The productions of /s/ and /S/ used in this section were provided by the

Learning to Talk Project (NIDCD grant R01-02932; Principal Investigators:

Jan Edwards, Mary E. Beckman, and Benjamin Munson), a longitudinal study

of phonological and lexical development in preschool children. As part of this165

project, adult speakers were also tested in order to assess the adult production

norms in the ambient community in which the child participants were being

raised. Additionally, the data and some of the results reported here have been

previously reported in Reidy et al. (2017).

The data set is accessed by calling4:170

S i b i l a n t F r i c a t i v e s ( )

This returns a tibble object that comprises 2475 observations on 14 vari-

ables. These productions of target /s/ and /S/ were elicited from 69 children

(33 girls, 36 boys), between the ages of 28 and 39 months, and 16 adults (10

women, 6 men) with a picture-prompted word repetition task. The test words175

for this task were selected in order to elicit multiple attempts of each target

fricative in word-initial position, across a variety of following vowel contexts.

On each trial, a picture of the referent of the test word was displayed on a

computer screen, and then an audio recording of the test word, spoken by a fe-

male adult native speaker, was played over loudspeakers. The participants were180

asked to repeat, into a microphone, the word that they heard (see Edwards &

Beckman, 2008a,b for discussion of the word-repetition task) . Each experiment

session was recorded digitally at 44.1 kHz sampling rate and 16 bit resolution.

Each attempted production of a target was transcribed by one of a team of

4The content of this section of the paper is also available as a vignette within the phoneigen

package. After installing the phoneigen package, the vignette can be retrieved by calling

in an R environment vignette(”socio-auditory-manifolds”, ”phoneigen”). The vignette itself

includes additional expository code that has been omitted here due to considerations of space.

All source code for the vignette (i.e., for all analyses and figures) is available in the file

https://github.com/patrickreidy/phoneigen/vignettes/socio-auditory-manifolds.Rmd.
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phonetically-trained research assistants. For those productions whose manner185

was judged to be a sibilant fricative, the place of articulation was denoted along

a four-point scale: [s], [s]:[S] (intermediate, but closer to [s]), [S]:[s] (intermediate,

but closer to [S]), and [S]. If a production was judged to be a sibilant fricative,

then the research assistant also manually annotated the onset of frication and

the onset of voicing.190

Each production by a child that was transcribed as a sibilant fricative (in-

cluding substitution errors, such as [s] for target /S/) was used as a stimulus in a

visual-analog-scaling (VAS) perceptual rating task: the initial consonant-vowel

sequence was extracted, beginning 5 ms prior to the onset of frication and end-

ing 150 ms after the onset of voicing in the vowel. Batches of these stimuli were195

played to native adult English-speaking listeners who were asked to rate the

frication noise in a production by clicking some point on a double-headed arrow

that was presented visually on a computer monitor. This arrow was anchored

by the text “the ‘s’ sound” at one end and by “the ‘sh’ sound” at the other. The

click location in pixels was logged automatically, and the pixel locations were200

normalized to fall within the [0, 1] interval, with lesser ratings indicating more

[s]-like sounds and greater ratings indicating more [S]-like sounds (see Edwards

et al., 2015 for further discussion of the VAS method).

Comprehensive documentation for the data set is available by calling:

he l p ( S i b i l a n t F r i c a t i v e s , phone igen )205

We call attention to a handful of variables that will be used below when con-

structing the socio-auditory manifolds. Each production is uniquely identified

by its Session and Trial within the session. The speaker of each production is

identified by Participant; adult participants may be associated with two Sessions.

The target word used to elicit the production is denoted by Orthography, and210

some target words were elicited multiple times in a given Session. The mean

VAS ratings for the children’s productions are found in the Rating variable; these

ratings fall within [0, 1], with lesser ratings indicating more [s]-like sounds and

greater ratings indicating more [S]-like sounds.

10



  

Finally, the ExcitationPattern variable in the data set is a list whose elements215

are 361-component numeric vectors. Each such vector denotes the values of

an excitation pattern, whose values were derived by passing an input sound

through a filter bank that comprised 361 fourth-order gammatone filters. The

center frequencies of these filters were evenly spaced from 3 to 39 (i.e., 0.1

inter-channel separation) along the equivalent rectangular bandwidth (ERB)220

scale, a logarithmic transformation of the physical hertz scale that models the

tonotopic mapping of the basilar membrane (see Moore, 2012 for a review).

Each channel in this filter bank can be thought of as modeling the frequency

tuning properties of a narrow cross-section of the basilar membrane, and the

filter bank, as a whole, may be thought of as a sequence of such cross-sections225

spaced evenly along the length of the basilar membrane. An excitation pattern

results from applying this filter bank to an input sound, summing the energy

within the signal output by each channel, and associating those energy values

to the center frequencies of the channels in the filter bank (see Reidy, 2015

for a detailed description of the excitation pattern construction process). In230

what follows, we take as fixed the values along the ERB scale on which an

excitation pattern is defined, and thus represent each excitation pattern as the

361-dimensional vector of its values.

The SibilantFricatives() data set exemplifies how data should be structured

when using the phoneigen package: the observations of high-dimensional data235

(here, excitation patterns) occur as a list-column of numeric vectors (here, the

ExcitationPattern variable); metadata about the high-dimensional data (here,

the talker, the target word, etc.) occur as columns of basic data types (here,

Participant, Orthography, etc.).

2.2. A socio-auditory manifold for the adults’ productions240

As a 361-dimensional vector, each excitation pattern may be construed as

a point in R
361. In traditional phonetic analyses, the dimensionality of each

excitation pattern would be reduced by mapping it through a small number

of functions that were chosen a priori—e.g., functions that compute values of

11



  

statistical-distributional parameters (such as spectral moments) or that project245

onto a different basis (such as the discrete cosine transform). By contrast, the

current method (based on manifold alignment and Laplacian Eigenmaps) learns

such a mapping into a low-dimensional space (say R
1 or R2) in a data-dependent

manner by constructing a socio-auditory manifold, which involves the following

five steps:250

1. uniquely identify each excitation pattern as a node in the socio-auditory

manifold;

2. define a symmetric, nonnegative function that takes two excitation pat-

terns as inputs, and outputs the distance between them;

3. add edges between excitation patterns produced by a given speaker, in255

order to construct speaker-internal submanifolds, and then weight these

edges according to the function defined in step (2);

4. add edges between excitation patterns produced by different speakers, in

order to align or register the multiple speaker-internal submanifolds into

a (connected) socio-auditory manifold, and then weight these edges;260

5. compute the Laplacian eigenvectors of the constructed socio-auditory man-

ifold.

2.2.1. Step 1: Identify the nodes in the manifold

For the SibilantFricatives() data set, the first step is accomplished automat-

ically by virtue of the Session and Trial variables, which together identify each265

excitation pattern. In general, having one or more variables in a data set that

jointly identify the high-dimensional data observations is necessary for the book-

keeping involved when constructing a socio-auditory manifold. In particular, to

add edges between nodes it is necessary to take the Cartesian square over the

set of nodes in the socio-auditory manifold, all while keeping track of multiple270

data and metadata variables associated with each node. The function Cartesian-

Square facilitates this bookkeeping. When calling CartesianSquare it is vital to

include all variables that are necessary for identifying nodes and for adding and

weighting edges between nodes in the socio-auditory manifold. For the adults’

12



  

data, these variables are Participant, Session, Trial, Orthography, and Excitation-275

Pattern:

a d u l t s node p a i r s <−

Cartes i anSquare (

x = dp l y r : : f i l t e r ( S i b i l a n t F r i c a t i v e s ( ) , Adu l t ) ,

P a r t i c i p a n t , Se s s i on , T r i a l , Orthography , E x c i t a t i o nP a t t e r n280

)

2.2.2. Step 2: Define a distance function over the nodes in the manifold

The second step requires us to choose a distance function that will be used

to compare two excitation patterns. A great number of functions are viable

candidates: the Euclidean and Manhattan distances may be familiar to the285

reader, and Deza & Deza (2009) presents an encyclopedic catalog of distance

functions. Previous applications of manifold learning to speech data have had

success with other functions (e.g., Jansen & Niyogi, 2006; Plummer et al., 2010);

however, in this example, we choose to use an information-theoretic distance,

the Jeffrey divergence, which is defined on two vectors xi and xj whose values290

have respectively been normalized so as to sum to 1:

Jeffrey(xi, xj) =
�

n

(xi[n]− xj [n]) · log

�

xi[n]

xj [n]

�

While different distance functions have proven useful on comparable high-

dimensional representations of speech data (see differences between Jansen &

Niyogi, 2006; Plummer et al., 2010; Reidy et al., 2017), we emphasize that the

choice of distance function is not trivial. Practitioners are encouraged to choose295

a distance function that captures meaningful differences between observations,

given how their data are represented. For example, the Jeffrey divergence would

not be an appropriate notion of distance in applications where the speech data

are represented as time series and where the researchers sought to map the

realizations of those time series into a low-dimensional space. It is an ongoing300

research question to understand how the different distance functions behave on

speech data, in the context of manifold learning; hence, our use of the Jeffrey

13



  

divergence here should not be taken as an assurance that this notion of distance

will yield acceptable results in all instances, even when the speech data are

represented as static excitation patterns or spectra as in the current example.305

The Jeffrey divergence can be straightforwardly implemented as a generic

function and associated methods, in order to facilitate vectorization over lists

of excitation patterns:

J e f f r e y <− f u n c t i o n ( i , j ) {

UseMethod ( ” J e f f r e y ” , i )310

}

J e f f r e y . numer ic <− f u n c t i o n ( i , j ) {

i <− i /sum( i )

j <− j /sum( j )315

sum ( ( i−j ) ∗ l o g ( i / j ) )

}

J e f f r e y . l i s t <− f u n c t i o n ( i , j ) {

p u r r r : : map2 db l ( i , j , J e f f r e y . numer ic )320

}

2.2.3. Step 3: Construct individual submanifolds

The third step involves the construction of speaker-internal submanifolds by

adding and weighting edges between productions by the same talker. To simplify

the demonstration, we will add edges in a programmatic fashion: all distinct325

productions by a given talker will be connected, yielding speaker-internal sub-

manifolds that are complete graphs (this procedure is in contrast to the example

in Appendix A, where edges are added between nodes based on the results of

a nearest-neighbor search). The weight assigned to each edge will be based on

the Jeffrey divergence between the two excitation patterns (read: nodes) con-330

nected by the edge. Given adjacent nodes i and j, with corresponding excitation

patterns xi and xj , respectively, the weight of the edge connecting i and j is

w(i, j) = e−Jeffrey(xi,xj). By exponentiating the inverse of the Jeffrey divergence,

a relatively large weight will be assigned to an edge between two nodes whose

14



  

corresponding excitation patterns have relatively small divergence (see left panel335

of Figure 4 below). Hence, the weighting function w may be thought of as a

similarity function.

These weighted edges are added between pairs of nodes with a call to Weight-

EdgesIf. The edges argument takes an expression that evaluates to a logical vec-

tor within the data set passed to x; hence, this expression will often reference340

metadata variables within the data set x. In this example, the subexpression

!(Session i == Session j & Trial i == Trial j) ensures that there are no loops (i.e.,

that no edges connect a node to itself); the other subexpression Participant i ==

Participant j adds an edge between all distinct productions by the same adult.

The weights argument takes an expression that evaluates to a numeric vector345

within the data set x; hence, this expression should reference the two data vari-

ables. In the data set returned by WeightEdgesIf, the edge weights are stored

in a variable named W ij; only for pairs of nodes (i.e., on rows) where the edges

expression evaluates to TRUE is the W ij variable nonzero.

a d u l t s s ubman i f o l d s <−350

WeightEdgesI f (

x = ad u l t s node p a i r s ,

edges = P a r t i c i p a n t i == Pa r t i c i p a n t j &

! ( S e s s i o n i == Se s s i o n j & T r i a l i == T r i a l j ) ,

we i gh t s = exp(− J e f f r e y ( E x c i t a t i o nP a t t e r n i , E x c i t a t i o nP a t t e r n j ) )355

)

2.2.4. Step 4: Align the individual submanifolds

In the fourth step, edges are added between productions by different talkers

in order to align the speaker-specific components into a connected socio-auditory

manifold. As in the previous step, these between-speaker edges are added via360

a call to WeightEdgesIf. In this example, the submanifolds are aligned to each

other according to the lexical information associated with the nodes: two exci-

tation patterns are connected by an edge if the respective speakers are different,

but the respective target words are the same. An appropriate expression for

this alignment scheme is Participant i == Participant j & Orthography i == Or-365
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thography j. Note that this expression indeed adds no loops into the graph.

a d u l t s man i f o l d <−

WeightEdgesI f (

x = ad u l t s subman i f o l d s ,

edges = P a r t i c i p a n t i != Pa r t i c i p a n t j &370

Orthography i == Orthography j ,

we i gh t s = exp(− J e f f r e y ( E x c i t a t i o nP a t t e r n i , E x c i t a t i o nP a t t e r n j ) )

)

Note that in both calls to WeightEdgesIf the weights were assigned using the

same formula. Consequently, all edges in the socio-auditory manifold could have375

been added with a single call to WeightEdgesIf. We nonetheless chose to add

these edges in two steps in order to emphasize a conceptual difference in the work

being done by the two types of edge: the speaker-internal edges construct spaces

of speech productions; the between-speaker edges align spaces. This distinction

is important to bear in mind since not all applications of manifold learning will380

warrant a common weighting scheme for the two types of edge. For example, in

some applications, it is desirable to scale the weights on the space-constructing

edges by a parameter µ ∈ [0, 1] and to scale the weights on the space-aligning

edges by 1 − µ, in order to differentially adjust the relative importance of the

internal structure of each space versus the correspondences between spaces. In385

other applications, the spaces to be aligned may not be commensurable (i.e.,

it may not be possible to define a coherent distance function on points from

different spaces), in which case the weights applied to the space-aligning edges

must be a constant or derived from some source other than the observations

from the two spaces (see, Plummer, 2014; Wang & Mahadevan, 2009).390

2.2.5. Step 5: Eigenmap the aligned manifold into a low-dimensional space

The final step asks us to map the aligned manifold into a low-dimensional

space. In order to carry out this mapping by computing the Laplacian eigen-

vectors of the constructed manifold, it will first be necessary to reshape the

edge-weight values in adults manifold$W ij into the adjacency matrix of the man-395

ifold. That is, the weights variable W ij has the one-dimensional structure of
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a vectorized matrix that needs to be recast into a two-dimensional array. This

reshaping is accomplished by calling AdjacencyMatrix, which should be called

with a comma-separated list of unquoted variable names whose values will be

used to construct row- and column-names for the resulting matrix.400

a d u l t s ad j a c ency <−

AdjacencyMatr ix (

x = ad u l t s man i fo ld ,

P a r t i c i p a n t , Se s s i on , T r i a l , Orthography

)405

The subsequent computations for computing the degree matrix, the Lapla-

cian matrix, and the Laplacian eigenvectors of the adults adjacency matrix are

encapsulated in the function LaplacianEigenmaps. The returned data table com-

prises thee variables: Eigenvector, a vector of eigenvector names e0, e1, e2, . . . ;

Eigenvalue, a vector of the eigenvalues associated with the eigenvectors; and410

Projection, a list of data tables that associate each original data observation

(identified by the row-names of the adjacency matrix) to its projected value on

a given eigenvector.

a d u l t s e igenmaps <−

Lap lac ianEigenmaps ( a d u l t s ad j a c ency )415

The optimal n-dimensional embedding of the data is given by the Laplacian

eigenvectors associated with the n least nonzero eigenvalues. By construction,

the adults manifold is a connected graph (i.e., there is a sequence of edges from

any node to any other node); whence, it follows that only the first eigenvalue

(i.e., the one associated with e0) is zero.5 Consequently, the first eigenvector420

e0 is ignored, and only eigenvectors e1 and above should be considered when

determining the low-dimensional space into which the data are eigenmapped.6

5In actuality, the first eigenvalue of the adults adjacency matrix is not identically zero, as

the reader may verify by calling adults eigenmaps$Eigenvalue[1]. This discrepancy is due to

quantization error; however, we note that the magnitude of the first eigenvalue (2.35×10−15)

is well less than a reasonable threshold of sqrt(.Machine$double.eps) (= 1.49× 10−8).
6Note that LaplacianEigenmaps returns all Laplacian eigenvectors, not just those judged to
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Figure 4: Left panel : The exponentially-decaying relationship between Jeffrey divergence

and the edge weight derived from it. Right panel : The low-dimensional representation for

the adults’ productions derived by eigenmapping the adults manifold. Target consonant is

indicated by point shape: circles for /s/ and triangles for /S/. Talker sex is indicated by color:

blue for female and orange for male. Decision boundaries for logistic regression classifiers that

predict target consonant and talker sex are indicated by black vertical and horizontal lines,

respectively.
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Once the eigenmapping projections have been computed, a low-dimensional

representation of the data can be constructed with the function ReduceDimen-

sions, which should be called with a comma-separated list of the unquoted Eigen-425

vector names that determine the low-dimensional space:

a d u l t s e1 e2 <−

ReduceDimensions (

x = ad u l t s e igenmaps ,

e1 , e2430

)

The right panel of Figure 4 below shows the distribution of the adults’ sibi-

lant fricative productions in the two-dimensional space defined by the eigen-

vectors adults eigenmaps$e1 and adults eigenmaps$e2. Visual inspection of this

figure suggests that e1 encodes the linguistic place-of-articulation difference be-435

tween /s/ and /S/ and that e2 encodes indexical differences between men and

women. Construction of the socio-auditory manifold did not explicitly leverage

information about the target consonant or the talker sex associated with the

sibilant fricative productions; rather, it leveraged information about the target

word and the talker identity, which suggests that by eigenmapping the mani-440

fold into a lower-dimensional space, more abstract categories were learned (i.e.,

target consonant abstracts over the multiple target words in which the frica-

tives were produced; talker sex abstracts over the individual male and female

talkers). Furthermore, because the learned eigenvectors do not encode the more

granular categories of target word and target identity, the acoustic similarity445

information that was encoded as edge weights seems to be crucial to the learned

abstractions.

be nonzero or greater than some threshold. Furthermore, depending on how a manifold is

constructed, it is possible for more than one eigenvalue to be zero. Specifically, the number of

zero-valued eigenvalues will be equal to the number of connected components in the manifold.

Hence, in practice, it is important to inspect the eigenvalues output by LaplacianEigenmaps,

and not to assume that all eigenvalues other than e0 should be used to determine the low-

dimensional embedding of the data.
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2.2.6. Comparison with spectral moments

Although spectral moments have been criticized for being ambiguously in-

terpretable in terms of the underlying articulation (see Koenig et al., 2013) and450

for not capturing subtle spectral characteristics that may be perceptually salient

(see Jannedy & Weirich, 2017), we nonetheless take them as an acceptable point

of comparison with the low-dimensional representation derived from Laplacian

eigenmapping, because of their sheer pervasiveness in the literature. For exam-

ple, spectral moments have been used to represent sibilant fricatives in studies455

that have investigated inter alia place-of-articulation differences (e.g., Forrest

et al., 1988; Jongman et al., 2000), sex-related differences (e.g., Fox & Nissen,

2005; Romeo et al., 2013), and developmental differences (e.g., Li, 2012; Nissen

& Fox, 2005; Nittrouer et al., 1989).

The literature suggests that centroid and skewness are the two most reliable460

moments for differentiating /s/ and /S/ (e.g., Forrest et al., 1988; Jongman et al.,

2000). Centroid indexes the location of energy concentration along the frequency

scale, which is expected to vary between /s/ and /S/ due to differences in front

cavity volume. Skewness tends to be (negatively) correlated with centroid,

which is likely due to the finite support of spectral representations, imposed465

by the acoustic waveform being sampled at a finite rate. The left panel of

Figure 5 shows the distribution of centroid and skewness values computed from

the adults’ sibilant fricative productions. In this plot, it is evident that the

two underlying dimensions of variation learned from Laplacian eigenmapping

(i.e., target consonant and talker sex) are simultaneously discernible in either470

of the spectral moments shown. For example, the centroid values could be

(very) roughly divided into four intervals: men’s /S/ < women’s /S/ < men’s

/s/ < women’s /s/. This situation is an example of a commonly encountered

problem with purely physical representations of speech data: the underlying

dimensions of variation that are of principal interest do not differentially map475

onto orthogonal physical attributes of speech.

A traditional solution to this problem is to batch normalize physical feature
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Figure 5: Left panel : The distribution of raw centroid and skewness values computed from

the adults’ productions. Target consonant is indicated by point shape: circles for /s/ and

triangles for /S/. Talker sex is indicated by color: blue for female and orange for male. Right

panel : The distribution of centroid values computed from the adults’ productions, after these

values have been normalized within talker or within word. Point shape and color indicate

target consonant and talker sex, respectively.
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values in order to marginalize out some underlying dimension of variation. For

example, data may be normalized within the levels of an indexical variable in

order to marginalize out the underlying indexical variation, and likewise for a480

linguistic variable. While this traditional method of batch normalization has

been, for the purposes of model fitting, superseded by more contemporary and

appropriate approaches, such as fitting a mixed-effects model with the indexical

and/or the linguistic variable as random-effects grouping factors, the ability to

visualize the batch normalized data is an instructive intuition-building exercise485

for helping to understand the role played by the edge-structure in the socio-

auditory manifold constructed above. The right panel of Figure 5 demonstrates

two examples of batch normalization: when z-scored by talker (x-axis), the

residual variation indicates the linguistic place-of-articulation dimension; when

z-scored by word (y-axis), the residual variation indicates the indexical dimen-490

sion of talker sex. The similarity between the right panels of Figures 4 and 5

suggest that the socio-auditory manifold pools data points within talker and

target word, the two variables used to add edges to the graph structure.

To quantitatively compare the learned eigenvectors e1 and e2 with centroid

frequency as a predictor of either target consonant or talker sex, we fit a series of495

logistic regression classifiers. For the eigenvectors, classical (fixed-effects-only)

regression models were fit. For centroid frequency, mixed-effects logistic regres-

sion models were fit with either Participant (when predicting target consonant)

or Orthography (when predicting talker sex) as the random-effects grouping fac-

tor. Target consonant category was predicted almost perfectly by either method:500

100% accuracy with the Laplacian eigenvector e1, and 99.792% accuracy with a

mixed-effects classifier with fixed and random effects of centroid, grouped within

Participant. Likewise, talker sex was predicted with high accuracy by both meth-

ods, but again Laplacian eigenmapping yielded greater accuracy: 90.938% ac-

curacy with e2, and 86.354% accuracy with a mixed-effects classifier comprising505

fixed and random effects of centroid, grouped within Orthography.
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2.2.7. Interim summary and discussion

This example demonstrated how to implement the computations needed to

construct a socio-auditory manifold from high-dimensional speech data and then

eigenmap that manifold into a low-dimensional space—a procedure borrowed510

from the field of manifold learning. The specific edge-structure used in the

manifold for the adults’ productions was found to function similarly to post-

hoc batch normalization within linguistic (target word) and indexical (talker

identity) variables. Compared with normalized centroid values, the Laplacian

eigenvectors better predicted target consonant and talker sex, although these515

improvements were very modest.

An instructive interpretation of manifold learning, in this example, is that

eigenmapping projects a gestalt representation of speech (e.g., an excitation

pattern) into a space whose dimensions are interpretable as the underlying, in-

dependent linguistic and indexical dimensions of acoustic-phonetic variation for520

sibilant fricatives. In this way, the low-dimensional values output by eigenmap-

ping should not necessarily be construed as “acoustic features” in the tradi-

tional meaning of the term: The image of the speech observations under eigen-

mapping represent the distribution of these observations across the underlying

dimensions of meaningful variation (e.g., linguistic and indexical dimensions).525

By contrast, such dimensions of variation are often (over)loaded onto individ-

ual acoustic features—construed as variables computed solely from individual

speech observations—as was seen in the raw centroid values.

2.3. A socio-auditory manifold for representing children’s productions

The preceding example focused on enumerating the computational steps530

that together construct a socio-auditory manifold and eigenmap it to a low-

dimensional space. The current example, by contrast, focuses squarely on the

third and fourth steps in this process—the addition of edges to the manifold—in

order to explicate how the structure of the socio-auditory manifold affects the

low-dimensional representation learned from eigenmapping.535
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For this demonstration, the goal will be to learn for the children’s produc-

tions a one-dimensional representation that predicts the associated VAS rat-

ings. Because these VAS ratings indicate adult perceptual judgments along a

one-dimensional continuum and because the linguistic place-contrast between

/s/ and /S/ is indicated by the first Laplacian eigenvector of the manifold of540

the adults’ productions, the manifold for deriving a feature for the children’s

productions will have the following graph structure: within a given talker, all

distinct productions will be connected to each other; between any two adults,

productions of the same target word will be connected; between a child and

an adult, productions of the same target word will be connected; between any545

two children, no productions will be connected. This particular construction is

motivated by the facts that it represents the structure of each intratalker pro-

duction space and that it puts each child’s production space in correspondence

with the community-norm set by the adults’ production spaces.7

The listing below shows how the community norm manifold can be imple-550

mented:8

community norm man i f o l d <−

S i b i l a n t F r i c a t i v e s ( ) %>%

Cartes i anSquare (

P a r t i c i p a n t , Adult , Se s s i on , T r i a l , Orthography ,555

E x c i t a t i o nP a t t e r n

7This construction assumes that the adult community-norm production categories are

similar in structure to the community-norm perception categories, and that the perceptual

processes at play in the VAS task involve something like comparing the presented stimuli

to these community-norm categories. By omitting child-to-child connections in the commu-

nity norm manifold, we do not intend to assume that the phonological and speech categories of

children develop without interaction with their peers. Rather, this omission only assumes that

the information in the child-to-child alignments may not be helpful in learning a representation

that predicts adults’ perceptions of children’s productions.
8In this and subsequent listings, the calls to functions from the phoneigen package have

been chained together using the pipe operator %>% from the magrittr package. This operator

takes the value of the expression on its left-hand side and passes it as the first unnamed

argument of the expression on its right-hand side.
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) %>%

WeightEdgesI f (

edges = P a r t i c i p a n t i == Pa r t i c i p a n t j &

! ( S e s s i o n i == Se s s i o n j & T r i a l i == T r i a l j ) ,560

we i gh t s = exp(− J e f f r e y ( E x c i t a t i o nP a t t e r n i , E x c i t a t i o nP a t t e r n j ) )

) %>%

WeightEdgesI f (

edges = P a r t i c i p a n t i != Pa r t i c i p a n t j &

Orthography i == Orthography j &565

( Adu l t i | Adul t j ) ,

we i gh t s = exp(− J e f f r e y ( E x c i t a t i o nP a t t e r n i , E x c i t a t i o nP a t t e r n j ) )

)

A one-dimensional representation of the children’s (and the adult’s) produc-

tions can then be learned by eigenmapping the community norm manifold:570

community norm e1 <−

community norm man i f o l d %>%

AdjacencyMatr ix (

P a r t i c i p a n t , Se s s i on , T r i a l , Orthography

) %>%575

Lap lac ianEigenmaps ( ) %>%

ReduceDimensions ( e1 )

Figure 6 makes the case that the Laplacian eigenvector e1 denotes a linguis-

tic place-continuum learned from the community norm manifold. The left panel

shows the distribution of e1 values stratified by the transcription and target580

categories. The top and bottom strata correspond to the adults’ productions

of /s/ and /S/, respectively, and the intermediate strata correspond to the chil-

dren’s productions. The mean of the values in each stratum is indicated by an

oversized point. The most extreme mean values are found in the adults’ strata,

suggesting a continuum anchored by the adults’ productions as endpoints. The585

children’s productions tend to fall between these endpoints, suggesting that the

values of e1 represent the incipient consonant contrast developing in these chil-

dren. Furthermore, within each target consonant category (i.e., blue points for

target /s/ and orange points for target /S/), the mean values of each stratum

form an orderly scale according to transcription category: [S] → [S]:[s] → [s]:[S]590
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Figure 6: Left panel : The distribution of Laplacian eigenvector e1 of the commu-

nity norm manifold across transcription categories. Target consonant is indicated by point

color: blue for /s/ and orange for /S/. Transcription category is indicated by point shape:

circles for [s], squares for [s]:[S], diamonds for [S]:[s], and triangles for [S]. The large filled points

denote the mean of each subset of points. Right panel : The relationship between VAS rating

of each item with the values of the Laplacian eigenvector e1 of the community norm manifold.

→ [s].9 The right panel shows a measure of adults’ perceptual judgments that is

more continuous than transcription categories, plotting the VAS ratings against

the values of Laplacian eigenvector e1.

2.3.1. Comparison with a different manifold structure

In order to demonstrate how the structure of the socio-auditory manifold595

affects the eigenmapped representation of the speech observations, we present a

manifold structure that is conceptually similar to the community norm manifold

but that yields an eigenmapping that is starkly different from the one learned

above. Specifically, we will construct a manifold that is similar to the commu-

9One curiosity about the distribution of e1 values is that values for the children’s produc-

tions of target /s/ span a much narrower range than the values for their productions of target

/S/. It is not clear whether this difference in range reflects a greater sensitivity by transcribers

to misarticulations of target /s/ as opposed to target /S/, or whether it is an artifact of the

graph structure (e.g., that the excitation patterns for children’s productions of target /S/ words

were adjacent to a greater number of adults’ productions in the community norm manifold, as

compared with those for children’s productions of target /s/ words).
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nity norm manifold except that it omits all edges that connect different produc-600

tions by a given child talker. Consequently, in this manifold, the neighborhood

of each node associated with a production of some word by some child com-

prises all and only nodes associated with a production of that same word by

some adult. The following code constructs this word neighborhoods manifold and

then eigenmaps it into a one-dimensional space:605

word ne i ghbo rhoods man i f o l d <−

S i b i l a n t F r i c a t i v e s ( ) %>%

Cartes i anSquare (

P a r t i c i p a n t , Adult , Se s s i on , T r i a l , Orthography ,

E x c i t a t i o nP a t t e r n610

) %>%

WeightEdgesI f (

edges = P a r t i c i p a n t i == Pa r t i c i p a n t j & Adul t i & Adul t j &

! ( S e s s i o n i == Se s s i o n j & T r i a l i == T r i a l j ) ,

we i gh t s = exp(− J e f f r e y ( E x c i t a t i o nP a t t e r n i , E x c i t a t i o nP a t t e r n j ) )615

) %>%

WeightEdgesI f (

edges = P a r t i c i p a n t i != Pa r t i c i p a n t j &

Orthography i == Orthography j &

( Adu l t i | Adul t j ) ,620

we i gh t s = exp(− J e f f r e y ( E x c i t a t i o nP a t t e r n i , E x c i t a t i o nP a t t e r n j ) )

)

word ne i ghbo rhoods e1 <−

word ne i ghbo rhoods man i f o l d %>%625

AdjacencyMatr ix (

P a r t i c i p a n t , Se s s i on , T r i a l , Orthography

) %>%

Lap lac ianEigenmaps ( ) %>%

ReduceDimensions ( e1 )630

Figure 7 demonstrates the importance of the within-child edges for learning

a low-dimensional embedding that represents a linguistic place-of-articulation

continuum. Without these edges, the observations are pooled into regions de-

fined by the acoustic properties of the adults’ productions of a given word. The
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Figure 7: Left panel : The distribution of Laplacian eigenvector e1 of the

word neighborhoods manifold across target words. Target consonant is indicated by point color:

blue for /s/ and orange for /S/. Right panel : The relationship between VAS rating of each

item with the values of the Laplacian eigenvector e1 of the word neighborhoods manifold.

reason for the disparity between the eigenmapped embeddings of the commu-635

nity norm manifold and the word neighborhoods manifold is that the values in

the manifolds’ respective adjacency matrices act as penalties on the distance

between points in the eigenmapped embedding. Hence, if two adjacent nodes

in a manifold have a high edge weight (due to low divergence between their

excitation patterns), then an embedding will incur a large penalty if it maps640

these two nodes far from each other in the low-dimensional space. Conversely,

if two nodes are not adjacent, then their corresponding entries in the adjacency

matrix will be zero, and an embedding will incur no penalty for mapping these

nodes to points that are far from each other.

Consequently, because a given production by a child is adjacent only to pro-645

ductions by adults in the word neighborhoods manifold, the eigenmapped em-

bedding will map the children’s productions near to the adults’ productions

of the same words in order to avoid any large penalties, without any regard

as to where a given child’s productions are mapped in relation to each other.

By contrast, the neighborhood of a given production by a child in the com-650

munity norm manifold comprises productions from adults and productions from

that child; hence, the eigenmapped embedding of a given observation results
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from a competition between being near to productions by the same talker and

being near to adults’ productions of the same word—with this competition be-

ing settled by the acoustic similarity between all of these adjacent productions655

as encoded in the edge weights of the manifold.

2.3.2. Comparison with centroid frequency

To compare the one-dimensional eigenmapped representation of the chil-

dren’s productions from the community norm manifold with an acoustic feature

that is commonly used to characterize children’s productions of sibilant frica-660

tives, we computed the centroid frequency of the excitation patterns. Figure 8

plots the distribution of (unnormalized) centroid values across the transcription

categories (left panel), as well as the relationship between the VAS ratings and

these centroid values (right panel). As with the Laplacian eigenvector learned

from the community norm manifold, the centroid values stratified by the tran-665

scription and target category form an orderly scale from [S] to [s]. As a quantita-

tive comparison of the community norm e1 Laplacian eigenvector with centroid,

the Pearson product-moment correlation coefficient was computed between each

variable and the VAS ratings: community norm e1 was found to have a stronger

relationship with VAS ratings (|r| = 0.757) than centroid does (|r| = 0.685).670

2.3.3. Concluding remarks

The preceding examples have demonstrated how to construct and eigenmap

socio-auditory manifolds, using functions from the phoneigen package, in order to

derive low-dimensional phonetic representations of both adults’ and children’s

speech. In both of these examples, the eigenmapping yielded representations675

that were sensible and, by some measure, improved upon a conventional rep-

resentation for sibilant fricatives—spectral moments. While such results do

indicate the utility of the proposed method, we close by emphasizing that we

recognize that the socio-auditory manifold and eigenmapping approach may not

be suitable for all instances of speech research. Given the flexibility available680

to the researcher in constructing a socio-auditory manifold (e.g., the choice of
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Figure 8: Left panel : The distribution of centroid values computed from the children’s pro-

ductions, across transcription categories. Target consonant is indicated by point color: blue

for /s/ and orange for /S/. Transcription category is indicated by point shape: circles for [s],

squares for [s]:[S], diamonds for [S]:[s], and triangles for [S]. The large filled points denote the

mean of each subset of points. Right panel : The relationship between VAS rating of each item

with the centroid frequency values.

metadata to be used to add edges to the manifold, the choice of differentially

weighting edges), there is still much applied research to be done in discovering

applications of this method to new problems in speech science and phonetics.

However, we ultimately view this flexibility as a strength of the method since685

it gives the researcher the opportunity to bring her content-knowledge of the

many facets (i.e., articulatory, acoustic, sociolinguistic) of speech to bear when

constructing a socio-auditory manifold that is best suited to the problem at

hand.

3. Broader impact of the analytic framework690

We close this paper with a brief discussion of the potential impact of our

framework beyond the analytic applications covered in Section 2. The discus-

sion stems from two key issues suggested by the analyses. The first issue is that

representations of speech data computed from methods such as LPC, spectral

moments, and the DCT (see Section 1) are physicalist in nature, i.e., they do695

not directly correspond to cognitive representations of language-specific speech
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sound categories, nor do they model the socio-cultural information that is part

and parcel of speech. Moreover, socio-phonetic models of speech perception that

rely on these analyses of speech data are perforce built (at least, in part) on top

of physicalist representations that reflect neither the cognitive mechanisms that700

speakers use in listening to speech nor the social systems within which hearers

interpret speech. The second issue stems from demonstrations that methods

such as LPC have difficulties representing child speech (see Story & Bunton,

2016, inter alia). The core of the issue is illustrated by the fact that LPC is

based on an adult model of speech production. Yet, speech and language are705

developmental phenomena that take shape as individuals progress from infants

into adult members of an ambient speech community. Thus models of speech

that underlie the computational techniques that yield representations used in

phonetic analyses should reflect the social, physiological, and other develop-

mental processes individual undergo. Below, we address both of these issues710

in relation to the socio-indexical assumption and the manifold assumption. We

conclude the discussion by situating our framework within the larger setting of

representation learning.

We begin our discussion of the first issue with respect to the socio-indexical

assumption. Indeed, a growing number of studies suggest that speech and lan-715

guage models may benefit from data representations that can more directly

reflect the interaction between phonetic categories and social categories (e.g.,

Strand & Johnson, 1996; Johnson et al., 1999; Hay et al., 2006; Warren et al.,

2007; Warren, 2017). For example, Strand & Johnson’s (1996) study of the inte-

gration of audio-visual information in the perception of tokens along an /s/–/S/720

showed that listeners’ categorical judgments of acoustically identical fricatives

changed based on whether they are paired with a male or female face articu-

lating the tokens. More recently, Warren’s (2017) New Zealand English study

investigated the interaction between socio-indexical and phonetic information

in listeners’ parsing of the speech signal. The results showed that listeners’725

perception of a word containing a vowel realized with the near-square merger

(associated with younger speakers) early in an utterance affected their sensitiv-
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ity to the perception of a rising intonation at the end of the utterance as uptalk

(also associated with younger speakers), as well as the process by which listen-

ers’ differentiate between uptalk and question intonation. This work not only730

supports the position that socio-indexical information factors into computing

phonetic categorical information from the speech signal, but that socio-indexical

information also impacts interpretation of the signal across simultaneous levels

of speech (see Ladd, 2012).

The need for data representations that reflect the interaction between language-735

specific phonetic categories and culture-specific social categories comes into

sharper relief when viewed from a developmental vantage point. In particu-

lar, there is a growing collection of evidence that the interaction between the

two types of category is present throughout the language acquisition process.

At the latter end of the process, Drager’s (2011) study of the productions of740

“like” phrases by New Zealand high school girls between 16–18 years of age

shows that the phonetic realization of /k/ differed across the girls’ social groups

in relation to the grammatical function of the word in their utterances. These

results suggest that older children and adolescents learn to express gender iden-

tities and other production-based indications of group membership, which may,745

in turn, engender socially-motivated variation in the speech signal. Further sup-

port comes from Li et al.’s (2016) study of Canadian English-speaking children

between 4–16 years of age wherein boys’ gender identity was shown to affect

the acoustic quality of their productions of /s/. Moreover, the earliest stages

of phonological and lexical acquisition are known to proceed in lockstep with750

the dynamics of age-differentiated social engagement between children and their

caretakers. A striking component of this complex relationship is observed in in-

fants transitioning from the dyadic mutual attention between themselves and

their caretakers during the initial stages of phonetic category learning to the tri-

adic joint attention between infants, caretakers, and other worldly objects that755

is a prerequisite for early word learning (see Vihman, 2014 for a review). This

set of results as a whole suggests that language acquisition involves the forma-

tion and emulation of models of socially salient speakers that children engage
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with during the acquisition process, as well as formation of mutable models of

the different types of social engagement.760

Results of this nature strongly suggest that representations of speech data

that more directly encode the social components of speech and language de-

scribed above may provide the basis for more fruitful analyses than those based

solely on representations computed from a strictly physicalist point of view.

Moreover, they support the design of representation computations that take765

into account the social developmental nature of speech and language phenom-

ena. Of course, social development takes place alongside physiological devel-

opment, and it is in this connection that we revisit the manifold hypothesis,

within the context of its role in models of speech articulation over the last few

decades.770

Given the constraints of the physical systems involved, articulatory mod-

eling is a natural setting for the use of manifolds, especially in deriving low-

dimensional representations of speech that reflect primary degrees of freedom of

the articulatory system (see, e.g., the “uncontrolled manifold” method Scholz

& Schöner, 1999; Saltzman et al., 2006; Saltzman & Holt, 2014; Szabados &775

Perrier, 2016). A key example is Maeda’s (1991) use of a statistical “linear man-

ifold” method (factor analysis, in this case) to map high-dimensional midsagit-

tal vocal tract representations to a lower-dimensional parameter space whose

degrees of freedom correspond to the “articulatory blocks” characterized by

Lindblom & Sundberg (1971). These lower-dimensional representations facili-780

tate user control of the articulatory synthesizer built over the midsagittal vocal

tract data while also providing linguistically meaningful interpretations of the

vocal tract shapes generated by the synthesizer.

Maeda’s articulatory model has since been updated to model vocal tract

sizes and shapes (and the corresponding acoustic output) ranging from those of785

young infants to those of mature adults using a fixed mapping method that scales

an adult vocal tract model (Boë & Maeda, 1998). While potentially useful for

developmental modeling and analysis (see, e.g., Oohashi et al., 2017; Rvachew

et al., 2006), it is crucial to recognize that aspects of adult-based articulatory
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models, e.g., control strategies and articulator dynamics, fail to extend to the790

speech of young children and the vocalizations of infants under scaling (see

de Boer & Fitch, 2010, and Plummer, TBD for broader discussion)10. While

the analysis in Section 2 constructed manifolds from auditory data points it is of

course possible to use articulatory data instead to construct “socio-articulatory”

manifolds. The use of articulatory data in our framework offers a potentially795

useful step away from fixed scaling, allowing the mappings that relate adult

articulatory models to child articulatory models to be learned via manifold

alignment.

More generally, the data points that manifolds are constructed over need not

come from a single sensory space. To illustrate, it is possible to construct one800

graph over auditory representations derived from productions of a single speaker

as well as a second graph over corresponding articulatory representations of

those productions and then align the two graphs. The representations derived

from the aligned graph’s Laplacian will reflect the manifold structures of the

data points from each respective sensory space rather than that of any one of805

them.

From a developmental perspective, manifold alignment both within and

across different sensory spaces is a promising approach to modeling the physi-

ological and socio-cultural developmental complexities involved in phonological

acquisition. The alignment computation provides the basis for modeling how810

infants (i) form relations across sensory spaces as their early vocal experiences

begin to shape their emerging vowel spaces, (ii) form abstract relations that

reconcile the radical differences between the sizes and shapes of their own vo-

cal tract and those of their caretakers, and (iii) organize their culture-specific

socio-vocal interactions with caretakers that further shape infant vowel space815

development. A number of computational models of acquisition have been put

10Note that this statement applies to other models of articulation, e.g., Rubin et al.’s

(1981) geometric model of articulation, incorporated within the TADA model, which can be

configured to model different vocal tract sizes and shapes; see Iskarous et al., 2003).
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forward that attempt to shed light on these issues (see Guenther, 1995; Oudeyer,

2005; Howard & Messum, 2011; Rasilo et al., 2013; Warlaumont et al., 2013;

Messum & Howard, 2015, inter alia). However, they model relations between

auditory and articulatory representations in terms of direct mappings between820

them, making it difficult to incorporate the influence of the dynamics of both

the infant’s physiological growth and their social interactions with caretakers

on the emergence of phonetic categories over the course of development, espe-

cially across cultures. In contrast, our framework provides room for modeling

the infant’s cognitive representation of not just modality-specific articulation825

and audition representations, but also constructed “intermodal” representa-

tions, via manifold alignment. These separate intermodal representations leave

the modality-specific representations intact to support the learning of other

mappings.

In light of the aforementioned efforts to carefully model the myriad lay-830

ered aspects of language learning, we conclude this discussion by situating our

framework with respect to recent advances in deep learning. The set of graph-

based manifold methods (Laplacian Eigenmaps included) that can be leveraged

within our framework for computing low-dimensional representations of speech

data falls within the domain of representation learning (see Bengio et al., 2013,835

for a review). Representation learning is a subfield of machine learning con-

cerned with building representations of data that facilitate other tasks such as

classification. Over the last decade, deep learning has emerged as a subfield of

representation learning wherein architectures built using a variety of neural net

models and probabilistic graphical models learn hierarchies of features that (at-840

tempt to) enhance or even negate the use of domain-specific features engineered

by researchers (see Hinton et al., 2012, for a review and perspective on deep

learning in automatic speech recognition). Although manifold methods can be

incorporated within these deep learning architectures, the methods themselves

are contraposed as “shallow learning” methods that are focused more on data845

exploration and interpretation.

A full discussion of the contrast between deep and shallow learning methods
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is beyond the scope of this paper, though we close with one key consequence.

While the recent technological advances yielded by deep learning architectures

are quite impressive, insight into learning problems may be obscured by the850

generic hierarchical computations these architectures carry out. To illustrate,

the layer-wise “abstraction” carried out by deep neural net architectures pur-

ports to generically eliminate variation in raw sensory input as stable categorical

representations are computed. Yet, socio-phonetic analyses are typically based

on specific kinds of variation being preserved in representations that are output855

from normalization computations. At present, it is unclear how to relate the

kinds of representations computed by deep learning architectures with those

that facilitate socio-phonetic analyses. In contradistinction, smaller-scale anal-

yses and modeling efforts aimed at carefully parsing and analyzing variation in

speech data remain fundamental to the conceptual advances and technical for-860

mulations that are driving the science forward. The manifold-based framework

we have proposed herein is broad enough in principle to model a multitude of

speech data phenomena while maintaining the interpretability of model compo-

nents.
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Appendix A. Manifold computations

Appendix A.1. Laplacian Eigenmaps

In this section we briefly review three concepts and computations used in the

sequence of computations specified in Section 2: weight matrices, the Laplacian,

and the Laplacian Eigenmaps method. To facilitate the review, we focus only the875
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Figure A.9: Data eigenmapped to lower-dimensional representations.

data set P , shown in Figure A.9 (left). Moreover, we assume the graph structure

GP over the data shown in Figure A.10 (left) has already been constructed, and

as a result of the construction each data point Pi corresponds to a node pi, and

each node pj is connected by an edge to node pj−1 and pj+1 for 2 ≤ j ≤ 11.

The graph construction procedure is covered in the following section.880

The weight matrix of a graph simultaneously encodes the set of nodes a

graph contains, which nodes are connected to each other by an edge, as well as

the weights that are assigned to those edges. Figure A.10 (right) shows a weight

matrix WP that encodes the nodes of GP as its row and column indices, and

the edges of GP and their weights as entries. For example, the entry at row p11885

and column p4, denoted WP (p11, p4), is a 0, which indicates that no edge exists

between these two nodes, while the entry WP (p4, p3) is a 1. This nonzero entry

indicates both that an edge exists between p4 and p3 and that its weight is 1.

Given the weight matrix of a graph, we can construct its Laplacian repre-

sentation. To illustrate the process, we use the weight matrix WP representing890

our graph GP . First, we construct a matrix DP with the same number of rows

and columns as WP . The diagonal entry of DP for row i is the sum of all the

entries in row pi in WP , with all non-diagonal entries set to 0. We then subtract

WP from DP . That is, the graph Laplacian of GP , denoted by LP , is computed

as LP = DP − WP . The graph Laplacian LP for the graph GP is shown in895
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Figure A.10: The graph GP (left) and its weight matrix WP (right).

Figure A.11 (indices are nodes as in weight matrices).

In general, let LG be the Laplacian of a graph G with n-many nodes uniquely

corresponding to data points. If e is a nonzero vector in R
n such that LGe = λe

for some scalar value λ, then λ is an eigenvalue of LG with corresponding eigen-

vector e.11 The collection of eigenvalues of LG is called the spectrum of LG,900

which is denoted spec(LG). It is important to note that spec(LG) for a graph

with n nodes will always contain n eigenvalues; however, some eigenvalues may

be repeated in spec(LG) while still corresponding to distinct eigenvectors. More-

over, for every graph G, 0 is in spec(LG) and each eigenvalue λ in spec(LG) is a

real number with λ ≥ 0. This fact makes it convenient to order the eigenvalues905

in spec(LG) as follows: 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

Regarding the eigenvectors corresponding to the eigenvalues in spec(LG),

those corresponding to the same eigenvalue can be chosen to be orthogonal,

and those corresponding to different eigenvalues are orthogonal. Therefore,

we are guaranteed to have a set of n orthogonal12 eigenvectors corresponding910

to the eigenvalues of LG. Moreover, we can scale each eigenvector without

impacting orthogonality, thus we assume that the eigenvectors have unit length.

11Eigenvectors of real symmetric matrices which may always be chosen to contain real

values.
12 Two vectors u and v are orthogonal if

�
i u(i) · v(i) = 0.

38



  
p1

p2
p3

p4

p5

p6

p7

p8
p9

p10

p11

p12GP

11

1

1

1

1

1

1 1

1

1

LP

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

p1 1 -1 0 0 0 0 0 0 0 0 0 0

p2 -1 2 -1 0 0 0 0 0 0 0 0 0

p3 0 -1 2 -1 0 0 0 0 0 0 0 0

p4 0 0 -1 2 -1 0 0 0 0 0 0 0

p5 0 0 0 -1 2 -1 0 0 0 0 0 0

p6 0 0 0 0 -1 2 -1 0 0 0 0 0

p7 0 0 0 0 0 -1 2 -1 0 0 0 0

p8 0 0 0 0 0 0 -1 2 -1 0 0 0

p9 0 0 0 0 0 0 0 -1 2 -1 0 0

p10 0 0 0 0 0 0 0 0 -1 2 -1 0

p11 0 0 0 0 0 0 0 0 0 -1 2 -1
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Figure A.11: The graph GP (left) and its Laplacian matrix LP (right).

For each graph G we thus have spec(LG) = {λ0,λ1, . . . ,λn−1}, and we have

corresponding eigenvectors e0, e1, . . . , en−1 that are pairwise orthogonal and of

unit length. Crucially, each of the eigenvectors ei can be viewed as a function915

from the nodes of G, and hence from the data used to construct G, to the set of

real numbers. These functions, called eigenmappings, provide the means to map

data to a lower-dimensional analysis space that reflects the structure encoded

by G.

Returning to our example data set P , using the eigenvectors of the Lapla-920

cian LP , we can map our data points to a one-dimensional space that reflects

the underlying manifold structure. We ignore the eigenvector corresponding to

the eigenvalue 0 (since it is a scaled version of the vector 1 and hence unin-

formative), and use the eigenvector e1 corresponding to the smallest nonzero

eigenvalue λ1. In this case, each data point Pi maps to the ith component925

of e1, denoted e1(i), and the mapping is shown in Figure A.9 (right). Note

that the representations yielded by the eigenmapping reflect the intrinsic one-

dimensional nature of the data set P . Note also that the computation described

above yields the representations in Figure 1 (right).

Appendix A.2. Manifold alignment using Laplacian Eigenmaps930

This section is focused on explicating the sequence of computational steps

used in the analysis in Section 2, hence we keep to a small example where data
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Figure A.12: The two data sets P (black) and Q (gray).

and corresponding graphs are visualizable. We take the two data sets P and

Q in Figure 2 (shown again in Figure A.12) from Section 1 as our point of

departure. We assume that the points in P lie on a spiral, and suppose we935

assume that the points in Q lie on a similar manifold whose middle section is

denser and whose ends curl outward instead of inward. Moreover, we suppose

that the measurements that have yielded the points in Q render larger x and y

values than the measurements that yielded the points in P . Suppose we have

additional information that point P1 and point Q1 are similar to each other in940

that they are close to the ends of their respective manifolds. The same holds

for points P12 and Q12. Moreover, the point P6 and point Q6 are similar to

each other in that they are “in the middle” of their respective manifolds. Given

this similarity between data points across the two manifolds, our goal is to

construct a mapping where the learned representation of Pi is close to that of945

Qi in a learned analysis space.

In order to construct such a mapping, we use manifold alignment and the

Laplacian Eigenmaps technique as follows:

1. uniquely identify each data point as a node in the graph;

2. specify a symmetric, nonnegative function that takes two data points as950
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inputs, and outputs the distance between them;

3. add edges between data points in a given data set, and then weight these

edges according to the function defined in step (2);

4. add edges between data points from different data sets, in order to align

the separate graphs into a single (connected) graph, and then weight these955

edges;

5. compute the Laplacian eigenvectors of the single constructed graph.

This procedure mirrors that specified in Section 2.

Step (1): We simply map each data point Pi to a node pi and each data point

Qi to a node qi.960

Step (2): We use the Euclidean metric as our distance computation between

data points.

Step (3): Beginning with the data set P , we add edges using the k-nearest

neighbors method: for each data point Pi, we compute its k-nearest neighbors

using the Euclidean metric. Each of these neighbors has a corresponding node965

in the graph, and we add an edge connecting these nodes to the node pi. To

keep the example simple, we set k = 1. Moreover, we use a constant weight

function that maps each edge to the value 1. The resulting graph, which we

denote by GP , is shown in Figure A.13 (top, left). To complete step (3), we

proceed in kind for the data in Q, however, to reflect the nature of manifold Q970

is assumed to lie on, the weight function assigns higher weights to edges in the

middle of the graph, GQ, which is shown in Figure A.13 (top, right). Weight

matrices WP and WQ are shown in Figure A.13 (bottom). Note that the graphs

GP and GQ are similar (but not identical) models of the manifolds underlying

the data sets P and Q, respectively.975

Step (4): We can capture the fact that points P1 and Q1 are similar to each

other, although not close to each other, by adding an edge that connects p1

with q1. Similarly, we can add an edge that connects p12 and q12, and say, p6
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q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12
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q10 0 0 0 0 0 0 0 0 5 0 1 0
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q12 0 0 0 0 0 0 0 0 0 0 1 0

Figure A.13: (top) Manifolds GP (left) and GQ (right) constructed from the data sets P and

Q, respectively. (bottom) The corresponding weight matrices WP (left) and WQ (right).

and q6, capturing the similarity between these pairs of points across manifolds.

Crucially, we are free to choose weights that reflect the degree of similarity980

between the points. In this case, we assign each new edge a weight of 2, as

shown in Figure A.14 (top). The weight matrix for the newly formed graph

is shown in Figure A.14 (bottom). Note that the upper left quadrant of this

weight matrix is simply the weight matrix WP for the graph GP , and the lower

right quadrant is simply the weight matrix WQ for the graph GQ. The newly985

added edges between the nodes of GP and GQ are represented in the lower left

and upper right quadrants.

Step (5): Now that we have created a single graph from two, we can use

its weight matrix to compute its Laplacian, and then compute the eigenvalues

and corresponding eigenvectors of that Laplacian. The eigenvector e1 is now990

an eigenmapping from the nodes of GP and GQ to a one-dimensional analysis

space, and hence a mapping of the data points in P and Q to the analysis
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Figure A.14: Alignment of two manifolds GP and GQ. (top) Graphs GP and GQ are aligned

to form a new manifold. (bottom) The alignment computation represented as a combination

of the weight matrices WP and WQ.
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Figure A.15: Eigenmapping from the nodes of GP and GQ in terms of point indices in the

original data sets (left) and a one-dimensional analysis space (right).

space. In this case, the first 12 components of e1 act as the eigenmapping for

the points in P , and the last 12 components the eigenmapping for the points

in Q. The eigenmapping is shown in Figure A.15 (left and right), with points995

jittered horizontally in the latter case for clarity. Note that the computation

described above yields the representations in Figure 2 (middle and right).
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